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The Yukawa and Hulthb potentials in quantum mechanics 
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Boulevard West, Montreal, Quebec, Canada H3G 1M8 

Received 8 August 1991 

Abstract. The concept of kinetic potentials is used to construct a global geometrical 
approximation theory far the spectra of Schrsdinger operators H = -A+ vy in which the 
potential shape y is either (i) a transformation y ( r ) =  g ( h ( r ) )  of a soluble patential h ( r )  
or (ii) a continuous mixture y ( r ) = j p ( r ) h ( r f ) d t .  The case i n  which y is the Yukawa 
potential and h = -(e‘- I)-l islhe HulthCn potential is discusedin detail. Simple formulae 
are derived for eigenvalue bounds which are compared to accurate data obtained by the 
direct numerical integration of SchrBdinger’s equation. 

1. Introduction 

In this paper we study the Yukawa potential y ( r )  and the HulthCn potential h ( r ) .  The 
shapes of these potentials are given respectively by the two formulae 

e-‘ U 
y ( r ) = - -  and h ( r ) = - F  (1.1) r e ‘-1 

where U and b are positive parameters. These potentials are very similar: they are both 
Coulomb-like for small r, and they both decay monotonically and (essentially) exponen- 
tially to zero for large r. The S-state eigenvalues gn of the Schrodinger operator 
- A + o h ( r )  corresponding to the Hulthtn potential are known exactly and are given 
[l ,  21 explicitly by the expression 

( ~ u - n ’ b ~ ) ~  
n = 1 , 2 , 3 , .  

4n2b2 
g ” = F ” ( U ) = -  

where the curves ( U ,  F n ( u ) ) ,  U >  n 2 b 2 / u ,  are called energy trajectories. We obviously 
have too many parameters in (1.2). Our policy will be to keep y ( r )  fixed, and to adjust 
h ( r )  by varying U and b. We then try to use the relationship between y ( r )  and h ( r )  
to establish a corresponding relationship between the (unknown) spectrum E. = F,(u) 
of the Yukawa Hamiltonian - A + u y ( r )  and the exact HulthCn spectrum (1.2). 

We consider three distinct approaches: simple inequalities between y ( r )  and h ( r )  
which we discuss in section 2; the Yukawa potential y represented as a smooth 
transformation g ( h )  of the Hulthtn potential (an application of the ‘envelope method’), 
in section 4 ;  and an approximation to the Yukawa potential as a continuous mixture 
of Hulth6n potentials with different scales, in section 5.  In  section 3 we outline briefly 
the formulation of spectral theory in terms of ‘kinetic potentials’ which we need in 
sections 4 and 5 .  

0305-4470/92/051373 + 10304.50 @ 1992 IOP Publishing Ltd 1373 



1374 R L Hall 

Although the Hulth6n eigenvalues for I> 0 may also be obtained to high accuracy 
[3], most of our effort will be directed towards exploiting the simple exact formula 
which we have for the S-states. For large values of the coupling U, the low-lying states 
are almost Coulombic and it becomes very effective to represent the Yukawa potential 
as a smooth (concave) transformation of -1 f r :  in this case, envelope representations 
lead to a simple upper-bound energy formula valid for all n and I ;  this is given in 
section 4. We have already discussed the Yukawa potential in an earlier paper [4] on 
screened-Coulomb potentials. In that article we relied heavily on potential inequalities. 
In the present paper we shall review and clarify these inequalities and discuss in more 
detail the spectral implications of the representation y = g ( h ) .  The newest aspect of 
the present paper is the extension of the notion of almost additivity for kinetic potentials 
to the case of continuous mixtures of the form y ( r ) - j  a ( r ) h ( r t )  df. Results are quoted 
for all these approaches, along with some accurate data obtained by the direct numerical 
integration of Schrodinger's equation. 

The central idea of this work is to try to represent y smoothly in terms of h, and 
then to exploit geometry to discover how the corresponding spectra are related. The 
methods we use are quite general and, for the problem studied here, they lead naturally 
to a variety of simple formulae for both upper and lower energy bounds. The paper 
is in effect a tour of some aspects of spectral geometry presented in terms of an 
interesting exampie. 

2. Simple inequalities 

As we mentioned in [4], the inequality 

in which b = U = 1 is certainly correct, but the spectral lower hound it provides is too 
weak to be interesting. The question which arises is: how to choose b and U so as to 
do better? In the Laurent expansions of y ( r )  and h ( r )  about r=O, one gets the same 
coefficient of the Coulomb pole if b = U ;  meanwhile, the constant term is the same if 
b = U = 2. These choices lead one to consider the difference function d(r) = h ( r )  - y ( r )  
given by 

e-' 2 e-' e-' d( =--- = 
r e''-1 r sinh(r) 

Sinre Si!!!!!?! 3 r, it fe!!ows !hi! d( r )  a 0: -rile graph nf d!r) shown i n  figure 1 demon- 
strates that d (  r )  < 0.056. Consequently, if b = U = 2, we have the potential inequalities 

(2.3) 

and these immediately yield via (1.2) the following spectral inequalities which we 
found in [4]: 

h( r )  -0.056 < y ( r )  < h ( r )  

(2.4) 

These results look a little different from those quoted in [4] because we do not have 
the vestigial factor of 4 in front of the kinetic energy operator in the Hamiltonians of 
the present paper. The energy bounds have a compelling simplicity, and for small U 
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Figure 1. The difference function d ( r ) = e ~ ' / r - U ( e b ' - l ) - '  between the Yukawa and 
Hulthin potentials. For the case U = b = 2  we have O S d ( r )  <0.056. 

(and n )  they can be very useful. We shall improve on both of them in sections 4 and 
5.  The use of the Laurent expansions to fix some of the parameters in the H u l t h h  
potential, and the establishment of bounds on the difference function d(r) will be 
helpful guides when we deal with approximations via continuous mixtures in 
section 5 .  

3. Kinetic potentials 

In the abstract theory [5-81 of Schrodinger operators H = K + V one thinks of the 
potential V = uf as a perturbation of the positive-definite kinetic energy term K = -A. 
If is an n-dimensional subspace of R2(R') contained in the domain of H and 
contained in the angular-momentum subspace labelled by the spherical harmonic Y f  , 
then we can define the nth eigenvalue E., ( n  = 1,2, .  . . )  by the min-max expression 

E,,, = inf sup (t), Ht)). 
9. *E0" 

II*lI=1 

(3.1) 

Kinetic potentials arise when one effects the minimization in two stages. At the first 
stage, we scale the linear space 9. so that we can fix the value of (I), Kt)) = s, then 
we minimize over all scales, that is to say, over all values of s > 0. Thus, if 9. = 
Span{&}:=,, and &(x)=  ~ { ( U X ) ,  u>O, then we define 

and 

(3.3) 

Of course, this union of scaled linear spaces is not itself a linear space. Now we are 
in a position to define kinetic potentials by the expression 

(3.4) 
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A kinetic potential (a contraction of the term minimum mean iso-kinetic potential) 
represents the result of min-max applied to the potential shape f :  the coupling parameter 
U is not included. Only in the final stage of minimization do we recover the eigenvalue 
in terms of U, thus 

EnI = F, , (v )  =min{s+ S>O v fn , ( s ) } .  (3.5) 

It is not difficult to show [9,10] that the kinetic potentials are convex, that they are 
ordered like the eigenvalues, that is to say, F >  G*f> g, and that they have the 
following scaling properties: 

a f ( t r ) + a f ( s / t 2 ) .  (3.6) 
We can use calculus to invert (3.5) and express kinetic potentials in terms of the 
trajectory functions. Thus from (3.5) we have the transformation pairs 

s = F . ~ ( u ) -  u F ~ ~ ( u )  f " l C S )  = F X v )  (3.7) 
and 

U-' = - f ; ( s ,  u - ' F d v )  = f d s )  -sTnds). (3.8) 
Fortunately, because of (3.7), we do  not have to use the abstract definition (3.4) in 
order to construct component kinetic potentials from known trajectory functions. 
Meanwhile, the transformation (3.8) allows us to reconstruct the energy spectrum from 
the kinetic potentials. 

In the case of the Coulomb potential (which we shall need in section 4) we obtain 
from (3.7) and the well known Coulomb spectrum CmI(v) 

v 2  
c ( r )  = -I-'+ c,,(v) = -- + F n l ( S )  = -- 

4( n + ( ? I + / ) '  
(3.9) 

For the S-states of the Hulthkn potential (with a convenient scale parameter f included) 
we have from (LZ), (3.6) and (3.7) 

1 -  + hn0(s) = -:[ (%+ 1)'I2 - 1 1 .  
h( r) = -- 

e'' - 1 
(3.10) 

If the potential shape f( r )  = g( h( r)) is a smooth transformation g of a soluble 
potential h(r), then the kinetic potentials associated withf(r) are given [9,10] approxi- 
mately by the simple formula 

fdb) =g(h- . , ( s ) ) .  (3.11) 

If g is convex we get lower bounds (= = a )  for all n and 1, and if g is concave we 
get upper bounds (= = s) for all n and 1. This result has [9] a very interesting 
geometrical interpretation in terms of envelopes: if we think of f  = g(h) as a function 
of h, then each tangent line to the graph of g is a shifted h-potential which is soluble 
and has a known energy trajectory; the envelope of this family of trajectories is precisely 
the trajectory we get when the RHS of (3.11) is substituted in (3.5). 

This convenience of approximation in terms of kinetic potentials extends also to 
sums because it turns out [lo] that the kinetic potentials are almost additive. More 
explicitly, the kinetic potentials corresponding to the sum of potential terms 
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are given [lo] approximately by the expression 
N 

f&)= E a2f$Ys). (3.13) 

At the bottom of each angular-momentum subspace we get a lower bound, that is to 
say, for n = l  and each 1 we have 5 = 2. For the higher radial excitations, this 
approximation, although no longer a priori a bound, remains very good. It is the 
extension of this result to integrals which we shall need to employ in section 5. 

, = I  

4. The Yukawa potential as a transformation of the HnlthCn potential 

In this section of the paper we find it convenient to work with the following definitions 
of y and h: 

e-‘ 1 
y ( r )  = -- and h ( r )  = -b. (4.1) r e ’ - I  

Consequently, if we express y as the transformation g of h then g becomes 

We must now discuss the convexity of g. We find that g ” ( h )  may be written in the 
form g” = PQ, where 

e-’(eb‘- 1) 
> O  

‘= r3b2h2(h -1)2 

and 

Q(r,  b )  = {2+(2+ b ) r + ( l +  b ) r 2  -eh‘[2+ (2 - b ) r +  (1 - b ) r 2 ] ] .  (4.3) 
A careful analysis of Q shows that Q(r ,  1 ) s O  and Q ( r , J 6 ) 2 0  for all r 3 0 ;  but Q 
changes sign if b E (1, d6) .  The formal proof of this claim is straightforward but long, 
Some functions g ( h )  are shown in figure 2 for a selection of values of b from 1 to J6. 

-51  / 
-2 

h 

Figure 2. Graphs o f y  =g(hl ,  which expresses the Yukawa potential y as functions o f f h e  
Hulthin potential h ( r ) = - ( e h ’ - l ) - ‘  faor b=1(0.25)2.25, and b = J 6 .  For b = l ,  g is con. 
cave: for b = J6, b is convex: but for b E (0, J61 the convexity of g is not definite. 
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The change in the convexity of g(h)  as b is varied is clearly illustrated in this figure, 
which, of course, is not offered as a proof of our claim. 

We are now in a position to use our theory to obtain spectral approximations and 
bounds. For the S-states, according to (3.111, we simply use g(h-.,(s)) in place of the 
unknown Yukawa kinetic potentials .Fno(s) in the general energy formula (3.5). It is 
interesting that we can, almost by sleight of hand, reparametrize the minimization in 
(3.5) in the following way. We change variables from s to r by the general equation 

h(r )=h- . , ( s ) .  (4.4) 

This is possible in principle because of the monotonicity [lo] of both h and h-.,. We 
then invert h-.,(s) to obtain s in terms of r; and, at the same time, we observe that, in 
view of (4.4), g(inl(s)) = g(h(r)) = y ( r ) ,  the original Yukawa potential. In the present 
example this only works for the S-states 1=0 because these are the only states for 
which we have the exact kinetic potentials given by (3.10). Finally, we obtain the 
following special case of the energy formula (3.5): 

We obtain our best lower bound when b = J 6  (g is convex) and our best upper bound 
when b =  1 ( g  is concave); these bounds are valid for all n. In the limit as b+O we 
recover the (S-state case) of the Coulomb envelopes used in [4]. In this case we can 
obtain upper bounds for all n and I because the Yukawa potential is a concave function 
of the soluble Coulomb shape c ( r )  = - l /r .  The general formula for Coulomb envelopes 
is 

E,,, s EC = min( .>O q+ vy ( r ) )  

In table 1 we exhibit some results obtained from (4.5) and (4.6). Accurate numerical 
data for the same set of eigenvalues will be shown later in table 2 of section 5.  

Table 1. S-slate eigenvalues of the Hamiltonian H = -A+ u y ( r )  by Hulthen envelopes 
y ( r ) = - e C ‘ l r = g ( h ( r ) ) ,  where h ( r ) = - ! e h ‘ - l ) - ‘ .  The case b = J 6  gives the best lower 
bound, and b = 1 gives the best upper bound. EC are upper bounds obtained from the 
Coulomb representation y!r) = g ! - l l r ) .  Corresponding accurate numerical data EN are 
shown in table 2. 

” n b = J 6  b = 2  b = l  EC 

15 I -42.708 -42.543 -42.294 -42.21 I 
2 -4.412 -3.852 -2.939 -2.611 

30 I -196.479 -196.312 -196.063 -195.979 
2 -31.925 -31.283 - 3 0.3 0 2 -29.970 
3 -6.828 -5.642 -3.652 -2.921 

70 1 -1 156.49 1 -1 156.324 -1156.074 - I  155.991 
2 .-242.105 -241.443 -240.446 -240.1 13 
3 -78.906 -71.457 -75.246 -74.499 
4 -28.349 -25.991 -22.233 -20.9 I6 
5 -10.792 -7.900 -2.790 -0.796 
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In (4.5) and (4.6) the transformation function g no longer appears: only the 
establishment of energy bounds requires a study of the convexity of g. The expression 
(4.6), for example, can be used to approximate the spectrum of any potential'y(r) 
which can in principle be written as a smooth transformation g of -l/r. 

5. The Yukawa potential as a continuous mixture of HultMn potentials 

The idea we explore in this section of the paper is to represent the Yukawa potential 
y( r )  in the form 

y ( r ) = l o m p ( t ) h ( r t ) d l  (5.1) 

where p ( r )  might be caiied the Huithin transform of y(rj. +ne point of this is that we 
can then take advantage of the almost additivity of kinetic potentials by using an 
integral version of (3.13). However, we shall first deal with the potential. 

The representation (5.1) immediately raises certain technical questions which we 
shall not deal with generally. Instead we consider the simpler approximation 

b 

(5.2) ..,- ,- ,.,-\- r ..,.,-.\A. 
y\,  J -  K!,, J - CUl\rLJ U1 J, 

where U, a and b are constants. As we did in section 2 we demand correct behaviour 
near r = 0. By comparing the Laurent expansions of y(  r)  and k(  r) and equating the 
coefficients of I l r  and the constant terms we obtain the two conditions 

u l n ( b / a ) = l = u ( b - a ) / 2 .  (5.3) 
Consequently we have only one free parameter, which we choose to be a. The 
approximation therefore becomes 

with b chosen to satisfy 

b -2 In(b) = a -2 In(a) a < 2 < b .  

(5.4) 

( 5 . 5 )  
This prescription is well defined since the function x -2  In(x) is U shaped on (0,m) 
and has a minimum at x = 2. Again, following section 2, we look at the difference 
function d(r)  = k(r)-y(r) .  We find by computer experiments that for a =0.688 we 
have Id(r)(<O.Oll. A graph of d( r )  is shown in figure 3. We may therefore write the 
pwsnlrar IIIcq"P1Luc> 

(5.6) 
We now turn to the kinetic potentials and the spectrum. The extension of (3.12) 

and (3.13) to the case of continuous mixtures of potentials with different scales leads 
immediately to the formula pair 

..-&.....:-, :---....,:.:-- 
k(  r) -0.011 < y(  r) < k(  r) f0.01 I .  

k (  r) = lom p( I) h (  r f )  d f  (5.7) 

and 
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Figure 3. The difference function d(r)  = k(r)-y(r)  between the Yukawa potential y and 
the continuous mixture of HulthCn potentials k ( r )  given by (5.4). With a =0.688 (and b 
fixed by the regularity condition ( 5 . 5 ) ) .  we have Id(r)/<O.Oll. 

where (5 .8 )  yields a lower bound for the bottom of each angular momentum subspace. 
By substituting the Hulthtn S-state kinetic pntentla!~ (3:lO) into (5,R) with p ( ! )  as in 
(5.4) we obtain from the general energy expression (3.5) the following approximation 
for the Yukawa spectrum: 

Emo= EA = min( S > 0  .s+& job [ (%+ ] ) I i 2  - I ]  dt ]  (5 .9 )  

We use the value a =0.688 and the corresponding b-4.398427 given by ( 5 . 5 ) ;  with 
these assignments we know that EA-(O.Oll)v  is a lower bound for n = 1. In table 2 
we exhibit the results EA given by (5.9), along with the lower bounds EL for n = 1, 
upper bounds given by (2.4), and some accurate values EN found by the direct 
numerical integration of Schrodinger's equation. The only adjustment we made was 
to choose a so as to optimize our approximation for p ( t )  in (5.1) as a rectangular 

Table 2. S-state eigenvalues of the Hamiltonian H = - A -  v eC'Jr .  EA are given by (5.9) 
and are derived from the approximation to the Yukawa potential as a continuous mixture 
of HullhCn potentials: EL are the corresponding lower bounds for n = 1. EU are the upper 
bounds from the inequalities (2.4). and EN are accurate YBIUCS obtained by direct numerical 
integration of  Schriidinger's equation. 

" n EL E A  EU E N  

I5 I -42.680 -42.515 
2 -3.784 

30 I -196.600 -1Y6.270 
2 -31.233 
3 -5.447 

70 I -1157.041 - I  156.271 
2 -241.3 I7 
3 -77.338 
4 -25.790 
5 -7.139 

-42.250 
-3.063 

-196.000 
-30.250 
-4.000 

-1156.000 
-240.250 
-75.1 I I 
-22.563 
-4.000 

-42.636 
-3.812 

-196.439 
-31.511 
-5.471 

-1156.473 
-241.892 
-78.021 
-26.151 
-7.055 
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distribution on [a, b]. Clearly the integral version (5.8) of the sum (3.13) is an interesting 
approximation. 

In table 3 we show some more results for an application to atomic physics. For 
this example we follow McEnnan et a/ [ l l ]  who consider the outer electron of an 
atom with atomic number Z which has (approximately) the Hamiltonian 

w = -I 2A - w e@ J r (5.10) 
where 

A = A,aZ"' w = a Z  A o =  1.13 a =(137.037)-'. (5.11) 
In our notation we rescale and consider instead the Hamiltonian H = -A+ uy, set 
U = 2Z2I3/A\,, and obtain the energy in kiloelectronvolts in terms of the eigenvalues E 
of H by the following formula: energy = (255.484 6)A2E. This factor is obtained by 
requiring the lowest eigenvalue -fa2 of W with A = 0 and Z = 1 to be equivalent to 
-13.604 7 eV, the lowest energy of the hydrogen atom. In figure 4 we show graphs of 
the energy functions to be minimized in (5.9) for gold (Z = 79) and n = 2,3 and 4. 
Our numerical results are shown as EA in table 3, along with EL= EA-(0.011)~ for 
n = 1, EU from the upper inequality of (2.4), and some numerical values EN from [ 111. 

Table 3. S-state eigenvalues of three atoms. The approximations are as for table 2 save 
that the results are quoted in kiloelectronvolts and the numerical data EN are from [ I l l .  

z n EL E A  EU EN 

13 1 -1.4903 
2 

36 1 -14.2571 
2 
3 

79 1 -75.0055 
2 
3 
4 

-1.4800 
-0.549 

-14.2169 
-1.6719 
-0.1054 

-74.8908 
-12.4029 

-2.3938 
-0.2130 

-1.4554 -1.488 
-0.0191 

-14.1663 -14.24 
-1.5107 -1.692 
-0,00885 

-74.8044 -74.95 
-12.0837 -12.50 
- 1.8903 
-0.00172 

Figure 4. T h e  energy functions E.(s) to be minimized in (5.9) for the application to gold 
( Z = 7 9 )  and n = 2 , 3  and 4. The minima are the approximations EA to the Yukawa 
eigenvalues shown in table 3. 
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6. Conclusion 

In this paper we have looked at various ways of relating the Yukawa potential y to 
the soluble Hulthtn potential h. Two principal representations were explored: (i) 
smooth transformations y ( r )  = g ( h ( r ) ) ,  and (ii) continuous mixtures y ( r )  = 
j p ( t ) h ( r t )  dt. Such compositions of component soluble potentials can only be of use 
provided we can find some way of treating them. It turns out that both representations 
can be conveniently studied if we reformulate the min-max characterization of 
Schrodinger eigenvalues in terms of kinetic potentials. The variational task is thereby 
divided into two stages: kinetic potentials are the result of optimizing with respect to 
the potential shape; the final stage, involving the coupling parameter, is the minimiz- 
ation of a function of a single real variable and generates a semi-classical form for the 
original quantum-mechanical problem. The advantage of this is that, to a very good 
approximation, the kinetic potentials i(s) are built from the components, just like the 
potentials themselves; that is to say, respectively, (i) j ( s )  =g(i?(s)), and (ii) p(s) = 
~ p ( t ) i ? ( s / t ' )  df. Moreover, as we have seen, these general approximations are very 
often, at the same time, energy bounds. 
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